
RD-R58 939 STOCHRSTIC INTEGRRLS RND PROCESSES MITH INDEPENDENT i/I
INCRENENTS(U) NORTH CRROLINR UNIV RT CHRPEL HILL CENTER
FOR STOCHRSTIC PROCESSES W N HUDSON NRR 95 TR-98

UNCLSSIFIED RFOSR-TR-85-9679 F49620-82-C-0909 F/G 12/1 NL

El......



1 1II2-8  1=2

1o25 1111-46III.

NATIONAL BUREAU OF STANDARDS
MICROCOPY RESOL.UTION TEST CHART

7:,e



AFOSR -TR - (.3:7

CENTER FOR STOCHASTIC PROCESSES

0') Department of Statistics
University of North Carolina

CY) Chapel Hill, North Carolina

00

S SEP 1 0 1985

STOCHASTIC INTEGRALS AND PROCESSES WITH INDEPENDENT INCREMENTS

by

William N. Hudson

Technical Report No. 98

March 1985

LA-

C vZ



IINCLASS 1ILI el 2
SE~iVC..ASSIFICAr:CN OF - iS PA-.E ZT 1

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

LUNCLASS IF lED

2s, SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAI LABILITY OF REPORT

2b. DECLASSIF ICATION1DOWNGRADING SCHEDULE Un limited -

A. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REORT NUMBER(S)

Technical Report No. 98 M-hSR -Th $55 -06
64L NAME OF PERFORMiNG ORGANIZATION hb. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Center for Stochastic Proces s (i Psai' Air Force Office of Scientific Research

6c. ADDRIESS (City. State and ZIP Codet 7b. ADDRESS fCity. State and ZIP code,

D-ept. Of Statistics Bolling Air Force Base
llniversit%- Co North Carolina Washington, DC 20332

Ba. NAMt OF FUNDIN G SPONSORING ~ B.OPPICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION I(I(aoicicheo

AFOSR J ~~ F49620-82-C-0009

Be. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Bolling Air Force Base PROGRAM $PROJECT TASK WORK UNIT

Washington, [DC 20332 ELEMENT NO. NO, NO. NO.

11. TITLE (Include Security Classification) 61102F 2304 A5

"iStochastic integrals and processqs with ind pendent incriments"
12. PERSONAL AUTHOR(S)/

W.\. HudsonA
73&. TYPE OF REPORT 73b. T IME E ~ED /8 I1"- DATE OF REPORT (Yr.. Mo.. Day) 156. PAGE COUNT

technical IFROM_!!L TO 4 5 March 1985 57
16. SUPPLEMENTARY NOTATION

19. ABSTRACT 'Continue on evuerse if necessary and identify by block numberi

1 tk)chatic integrals are defined using processes with independent increments
~ itc~rat)rs \si'npie and perhaps new method is given for obtaining approximatingz

simfpiQ' intei-,rands. In thle special case where the integrand is a stable motion of index
r . ,thle intee-rand nay have pthas in L .Basic properties are established.

!"hen 'he characteristic functions of integrai's involving nonrandom integrands are
.Z~. .ia~ <t"t -- tahllsh necessary and sufficient conJitions forthe independence

20. OISTP1SUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITEO M SAME S RPT. 7jOTIC USERS 13 Unlimited

22&. NAME OF RESPONSIBLE INDIVIDUAL 22.TELEPHONE NUMBER 122c. OFFICE SYMBOj.
finclude Am@ Code) ~ v-~

00 FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLAS Tr1E[
SECURITY CLASSFICATION OF THIS PAGE



-.: . - o4 . . i- 
- 
." .' .'; . . ." - . . -- - .. . . _. .. ... . . . . - ,. ., -

STOCHASTIC INTEGRALS AND PROCESSES WITH INDEPENDENT INCREMENTS

William N. Hudson COPV
Icsecc|S

Acces _lon r-'7

Center for Stochastic Processes
University of North Carolina at Chapel Hill -

and
Department of Mathematics - ........

Auburn University

Auburn, AL 36849 ,

Abs trac t

Stochastic integrals are defined using processes with independent

increments as integrators. A simple and perhapsinew method is given for
obtaining approximating simple integrands. In the special case where the

integrand is a stable motion of index p 6 (1,2), -the integrand may have paths
in Lp. Basic properties are established. Then the characteristic
functions of integrals involving nonrandom integrands are computed and used to
establish necessary and sufficient conditions for the independence of such

integrals. , ...

Keywords: Stochastic Integrals, Processes with Independent Increments

AMS 1980 Subject Classification: 60H05

This research was partially funded by the Air Force Office of Scientific
Research Grant no. F49620 82 C 0009.

A Ii -R -e 1

. . . . . .. . . . . . .. I " . '.. . .. . . . . -' ' "

. . . . . . . . . . . . . . . . .. . . . . . .. . .



0 71

1. Introduction

I

In this paper stochastic integrals are defined with respect to processes

" with independent but not necessarily stationary Increments. Sufficient

condittons are given for a process to be integrable. In the special case

where the integrator is a stable motion of index p c [1,2), the integrand may

* have sample paths in L . Basic properties of these Integrals are established

and then attention is restricted to integrals involving nonrandom integrands.

For this special case, characteristic functions are computed and used to

establish necessary and sufficient conditions for the independence of such

Integrals.

Throughout this paper C(t), t > 0, will denote a stochastically

continuous process having independent increments and not having a Gaussian

component. The reason for the assumption of no gaussian component is that

"- such a component is obtained by a nonrandom time change from a Brownian motion

.* and leads to a simple variation of the extensively studied Ito integral. We

*further assume that the sample paths of 4(t) lie in D[O,w) and that 4(0) 0.

It is well-known that for every a > 0 such a process may be written as a sum,

4(t) b (t) + "a(t) + C'(0,

where b (t) is a continuous nonrandom function such that b (0)=0, and where
a a

* a (t) and 4'(t) are stochastically continuous independent processes with

independent increments having paths In D[O,-) and such that 4 (O) = 0 = C(0).

Moreover, the sample paths of 4 have jumps of absolute values less than ora

equal to a while those of r' have jumps of absolute values greater than a.

.,.'.:'~~.. ... :.... .. : -....-...... -..... ,....,.... ... '... -.... .... '... ',.... ..... ........... ..... ....- .
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The jump-time Levy measure will be denoted by M; M(A×B) is the expected number

of lumps of size in A which occur at a time in B. The notation M will bet

used to denote the Levy measure of (t); then Mt(A) = M (A x [O,t)), t '> 0,

.t((0) = 0, and if J = [-1,1 , f• x2 dM < -, and 1 (JC) < -. The jump-time

Levy measures of 4 and of r' are the restrictions of M to aJ x [0, , ) and

tJ x (0,,) respectively. The centering for 4a(t) will be chosen so that

.C Ca(t) has the ch. f. exp{f T(ux) d. (x)) where T (x) = e i x -1 -ix. The
Jt 0

ch. f. of C1(t) will be exp{f eiUx -1 dMt (x) and this process will have

a J

step functions as sample paths. We will assume throughout that for some

a > 0 the nonrandom function b (t) is of bounded variation over every finite
La

interval. This will be case iff it is the case for all a > 0.

The process 4(t), t > 0, will be assumed to be adapted to a nondecreasing

family (A : t > 01 of a-fields, such that for each t > 0, A and a tc(t+h)-t -- t

4(t): h > 01 are independent. The integrands will be stochastic processes

V(t), t > 0, which are adapted to {A t}. The term "adapted process" will

always mean adapted to these same a-fields A An adapted process V(t) will

be said to be simple if it is of the form

V= j Vk I + W I
k=O tk+ 1

where ) to < tl, t 2 < ... , lim t n  00 and for all k, Vk is

A t - measurable. Note that a simple process V has left- continuoustk

paths. For such a process the stochastic integral is defined as usual to be

. . . ... . . . . . .
ill.-.'- '- .. ............ .... ................ .....
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k( t)
ft Vd4 =X~l V AC + V (C(t) r(k(t)))
0d = I i k(t)

where AC = (tj+l) - C(t ) and t k(t)<_ t ( tk(t)+l. (Since r,(O+) =

1(0) = 0 , the definition of ft Vd does not involve W.) Observe that for

simple V the sample paths of ft VdC lie in D 10,-). In sections two and

three the class of integrable processes is extended to adapted predictable

processes V(t) such that for some a > 0, fJ ×[O,T] n(xV(s)) dM(x,s) <

a.s., T > 0 where n(x) = lxi A x2 = min( xI, x2 ). The idea of using this

criterion in the case of stationary increments is Kallenberg's (see Theorem

3.1 of [21). The resulting class of integrable processes is larger than the

usual class of processes which have paths in L210,T] a.s. and so generalizes

Millar's work in [5]. In the nonstationary increment case, we require that

the integrands V(t) be predictable; that is, V(t) is measurable with respect

to the a-field of subsets of 2 x [0,-] generated by the left-continuous

adapted processes. In section 2 the stochastic integral is defined with

respect to a and in section 3 the definition is extended to r. This

definition contains that of Kallenberg in the special case of stationary

increments and predictable integrands. Throughout section 2 we use

Kallenberg's techniques to define the integral; in particular we use his

extension of an inequality due to Dubins and Savage (1]. In section 4 we

construct a complex-valued exponential martingale and in section 5 we consider

stochastic integrals with nonrandom integrands.

In addition to the work of Kallenberg [2] generalizing that of Millar

[5], we should mention that of Rosinski and Woyczynski 19], Urbanik and

.' • . ° .- . odm - a ••. -.- ° .. " •O~. .- ° .- - . % ' . .°./ .. ... . . . . -. .. .°%.-° ° . . ° . .

,..;. -.. -..", / ,'- -.;- ,......- -.' .' .'..'..','.,,..-/ ..-.-. . .--...-. °..- , .-.....- -..-... .....-.... .. .,.. .-. .- -.......
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Woyczynski 1101, and Prekopa 16], [71, and [8). Rosinski and Woyczynski

studied integrals with respect to p-stable motions and established several

interesting results. Urbanik and Woyczynski considered nonrandom integrals

with respect to symmetric processes with stationary independent increments.

They established conditions for stochastic integrability in terms of Orclicz

spaces. Prekopa made an extensive study of random measures.

2. Construction of the Integral

In this section the existence of simple adapted processes which

approximate a given predictable process V is established. Then the

stochastic integral is shown to exist as a suitable limit. The given process

V is assumed to satisfy the Kallenberg condition

fjx[0,tin(x V(s)) dM(x,s) < a.s.

for some a > 0 and a fixed t. The smoothing technique used by Kallenberg and

others to construct these simple processs fails to work in general for

nonstationary increments and we use another method here.

Let t denote an arbitrary fixed positive number. Partition the

interval [0,t] into the subsets {0}, I = (0 ,2 -rt], Ir2( 2-rt, (2 )2-rt] .. ,

Irj = ((j- 1 )2-r t,j2-rt], ... Ir,2r = ((2 r-l) 2-rt, t). Let * be the

rr
family of all finite disjoint unions of sets of the form A0  tO)0,

Aj Itr,j, I < j < 2r
, where Aj F A

Lemma 2.1. A4j'r is a a-field of subsets of 1 x [0,t].

Proof. The proof is standard and is omitted.

Lemma 2.2. If a process V is tr-measurable, then it is simple and

"- "', '- '" ; ,."-. v'-." " .'- ." "-. ."-/ ". ".'-.'."--"."."".".""...'.."-'.-...,.."..-.........,..-.."."-....'...."."..-....-.-.'-"''"-"..

. . . . . . .. . . . . . .
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adapted to the a-fields

Proof. Assme V is V -measurable and let V be the restriction of V to

Q x I rj . The o-field on S2 x Irj induced by Yr is the product a-field

A J2rx {0, Irj} and so Vj is measurable with respect to this product

a-field. Consequently, for each w E s2, V 1 (.,w) is constant on I r, and for

each s c I j, V (s-) is A - measurable. Thus V(s,w) = Vi, a fixedr,j j 2-

A - measurable r.v. on T rj. This proves that V is simple and adapted.

Q.E.D.

Now let PC he a finite Borel measure on 1O,t] defined for Borel sets D

by the equation

vi(D) = x2 dM(x,s) + M (aJc x D).
aJxD

Let v a be the probability measure on [O,t1 determined by Pi; i.e.

w (D) = 1ja(D)I ([O,tD. Then P x P is a probability measure on the

product space: (Q x (Ot], A x B[O,,t]) where B[0,tl denotes the Borel
S t

o-field of subsets of [O,t]. We denote expectation relative to this

probability measure P x P by E (). A predictable measurable process is a

r.v. on this space.

Theorem 2.1 Let V be a predictable measurable process which is bounded

over f[O,t]. Define Vr = E IVI'r. Then {V } is a sequence of simple
o v r x [ ~ ) e i e V r = E p × P v , r r

adapted processes such that

(a) P flim V = V} 1,S r

(b) lim E 1 x2IVr(S) - V(s)IdM(x,s) 0, and
r ajx[0,t]

(c)rli m  E jcxtOtI IVr(S) - V(s)IdM(x,s) 0.

.....................- ... ........... ...

*..........................................................."%" .. " . " " . "- .. ... * *
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Proof. Since r is a nested family of a-fields, tVr I is a martingale.

Also any upper bound for V is a tipper bound for V so by the Martingaler

Convergence Theorem there exists V such that {V } converges to V Pxp, a.s.r c

and in L I(Px The statements (a), (b) and (c) will follow if V = V.

Let 1 = Of : r > 11. Then every left-continuous process over Q x [O,t] is

-measurable since if j 2- r < < (j +02% V(s) = 11m V(j 2 r0.

Consequently the predictable process V is P1-measurable and V = V. Q.E.D.

Corollary 1. Let a > 0 and suppose that V(s), 0 < s < t, is an adapted

predictable measurable process which is bounded over 1 x [0,t]. Define

V r = E (V[or) as in Theorem 2.1. Then

lim E f n(xV(s)-xVr (s)) dM(x,s) 0.
r aJx[0,t]

Proof. Let co = sup {IV(s,w)l: 0 < s < t, w E Q}. Then IVr (s,W) < co for

(Ws) E Q x10,t1. First suppose that I xV(s) - XVr(s)j < 1. In this case

n(xV(s) - xV r(s)) = , 2 V(s) - Vr(s)12

< 2c 0 x
2 IV(s) - V(s)I.

On the other hand if V(S) - x V r(S) >, then xI > 1/2c0 and so

n(x V(s)- x Vr (s)) = lxi lV(s) - Vr(s)

< 2 c 01Ix2 V(s) - V(s)1

That is, in either case

n(x V(s) - x Vr(s)) <2 co 1XIi IV(s) - V(s)I

and by (b) of Theorem 2.1,

................................................................"."'" " .........................
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lim E f n(x V(s) - x Vr (s)) dM(x,s) 0.r- * 0 CJ X[O , t]

Q.E.D.

Lemma 2.3 (Kallenberg) For all x and y,

n(x + y) < 4n(x) + 4 n(y).

Proof Note that sup n(2x) < 4 and hence
x n(x)

n(x + y) = n(lx + yj) (n is even)

<n( 1xI + M)i (n is nondecreasing in [0,-))

< 4 n (max(JxJ, lyl))

<4 n (l1xi) + 4 n(jyj) = 4 n(x) + 4 n (y). Q.E.D.

Corollary 2. Let a > 0 and suppose that V(s), 0 < s < t, is an adapted

predictable process such that

f n(x V(s)) dM(x,s) < - a.s
c X[0, tI

Then there exist simple adapted process V such thatr

lim f n(x V(s) - x V (s)) dM(x,s) 0 a.s.
r+- JX[O,t]

Proof Define processes V(k)(r,w), 0 < s < t, by

Sk if V(s,w) > k

v (k) (s,w) = V(s,w) if -k < V(s,,) < k

L-k If v(sw) < - k.

Then by the Dominated Convergence Theorem

, = • = wd. = = a -= = -, - - ] l l ml d k lb .. . . . .... " . . " "



lim f n(x V(s) - x v(k) (s)) dM(x,s) 0 a.s.
k-w -.Jx[O,t]

Thus for each positive integer m, there exists k such thatm

(k)

P{ f n(x V(s) - x V In (s)) dM(x,s) > 1 } 1 2

Jx[O,t] 8m m

From Cor. I it follows that for each k there exist simple adapted processes
m

V such thr t
r

(k)
P-lI f n(x V - V (s))dM(x,s) = 0.

r JX[0, tj r

Thus for each In we may choose r so thatm

P~) nx~ (ki) -x 1/n.

P ; (X v (k'n ) (s) - x V (s) dM(x,s) > < I/m 2
a J× O, t] r

Since by Lemma 2.3, n(x + y) < 4 n(x) + 4 n(y),

pi )r n (x V(s) - x V (s)) dM(x,s) >
ctJx[0, t] rm

(k)
< P{4 : n(x V(s) - X V M(s)) dM(x,s) > T M

JX[O, t]
(km

+ P 4 j n(x V M(s) - x V (s)) dM(x,s) >1TM-
aJX[O, t) In

2
K- .

m

By the Borel-Cantellf Lemma,

Im f n(x V(s) - x V (s) dM(x,s) = 0 a.s.
acJ[O,t]

Q.E.D.

Corollary 3. Let > O and let V(s), s > 0, be a predictable process adapted

to the J-fields , such that for every t > 0t
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f n(x V(s)) drl(x,s) < K s
(1Jx(o,t]

Then there exist simple adapted processes V r(S) such that

(a) V (s) = 0 for s > r, and

(b) for every t > 0 11Z f n(x V(s)-x V (s))dM(x,s) = 0
r XiX [0, t r

a. S.

Proof. By Cor. 2, for each positive integer r > 0 there exists a simple

adaptedI process V r(s) satisfying (a) and also the condition that

P ~n(x V(s')-x Vr (s)) d>1(x,s) > . K r.
uJ' [o, ti

It follows from the Borel-Cantelli Lemma that

r cxL xOmtn(x V(s)-x V (s)) dM(x,s) =0 a. s.

which implies (b) since n(-) > 0. Q.E.D.

Corollary 4. Let ai > 0 and assume that V(s), 0 < s < t is a bounded nonrandom

real-valtied measurable function on [0,t]. Then there exist step functions

V of the form

k-I

V =v 0 It)j (t t
-j=0 rj, rj+1

where 0 =t ()K t Kl < ... < t k = t such that
r

(a) ~V r K- "V

r -r

(c) ) x 2 1 V(s)-Vr(s)l dM(x's) =0,

acXi [1-, tj

,J) ~ -L IV(S) -V (S) dM(x,s) =0, and

.I C. t r



Define V' by the equation

VI (s) =max (-(n AIIVi .), min (V (s), mAIi))m

Then for m > K, Iv~s "l I(s) - V m(s) I~ and hience

P-un [ n(x V' (s) - xV(s)) dM =0.
m-~ QJXIO, t] m

Now if 1I < a there exists a positive constant KIsuch that

K X'- (V',(s) - V(s)) 2< n (xV'(s) - x V(s)).
1 m

It follows by the Dominated Convergence Theorem that

lrn E f x 2(VW(s) - V(s)) )dM1 = 0

which proves the Lemma for bounded V.

For general V define

V k (s) = max (-k, min (Ms), k))

and again use the Dominated Convergence Theorem to see that

lrn E f x 2 (M() - V k(s)) 2dM = 0.
k+w 00-1IO,t]

Since each V kis bounded, there exist simple processes V' such that for each

k, N!Vi; < i~V k 1. and

2 2
inequrility (a+b) < 2a + 2b, we obtain the inequality
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and since both terms on the right converge in probability to zero,

P-lim sup If kd,-f' Vdj = 0.
k- 0<s<t

To prove the second part of Property 3 assume that

k If V(u) > k

Vk(u) = <V(u) if - k < V(u) <.k
k_

k of V(u) < -k.

Then by the Dominated Convergence Theorem

lim f n(x V (u) - x V(u)) dM(x,u) = 0 a.s.
k* - Jx[O,t] k

Clearly the V ks are Integrable since V is integrable and n(xV k(u))

< n(x V(u)). It follows by the first part of the proof that

P-lUm sup J0 Vk di - 0V d = 0. Q.E.D.
k- 0<s<t

Lemma 2.6: Let V be integrable over [0,t] with respect to C c C . If

2 2

E f x V(s) dM <,
aJx[O, t]

then there exist simple processes V such that
m

' V m0i-: sup {Ivm(s,w)l: 0 < s < t, w E Q) < ,,vii0 A m

and

22

lim E f x (V(s) - Vm (s))2 dM = 0.
m+ 0 aJx[O,t]

Proof. First assume that IIV. < K < - where K is some finite constant.

Since V is integrable there exist simple processes V such thatm

-. .. . . . . . . . : .- .. . . . • . - .- - -.: . . . . .. ... . ..-. ..-... ,.. . . .. . - .. . .
"' -"""" . : ""' . .. ....- ' . ." . .". ."", . . . ." - i ,- " ". .. .li l ", . .
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P-lrm f I(xV km(u) - x Vk (u)) dM(x,u) = 0.

m-- oJi[O,t]

The existence of such sequences is guaranteed by Cor. 2 to Theorem 2.1. ise

Theorem 2.2 to see that

P-,rn sup I VkS d - i g Vk d j = 0.
n - O<s<t

Choose positive integers mk tending to infinity such that

P {f n(x Vkm (u) - x Vk(u)) dM(x,u) > 1/k) < I/k,
aix[0,tI kc

and

P ( ,sup 1 V dS - fS V, d > 1/k) < 1/k.
0<s<t 10 kink 0 k

Now by hypothesis

PKI r n(xV k(u) - x V(u)) dM(x,u) = 0.
aJXlO, t k

But by Lemma 2.3

n(x Vk N(u) - x V(u)) < 4 n(x Vkmk (u) - x Vk(u)) + 4 n(x Vk(u) - x V(u)).

From the above it follows that

P-lim f n(x Vkm (u) x V(u)) dM(x,u) 0
k- cax[0, t] k

Use Theorem 2.2 again to see that

P-,im sup IS v - s, f' 1 0
k- 0<s<t kmk 0

Since

sup "0 d f Vdrf K sup fVkd - k~V d~j

s<s<t Iss VkMk

-",- --,'-..;.::.:"~~~~~~~~~~~~...... ...'.' . .... .. ,.-.-...... . v -... - ... .. ... ,,;.--:.-..,. -..-.
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i=1,2. Thus V is integrable with respect to tj and 2. Furthermore by

Theorem 2.2

P-1im fO Vmdr = S V d 1 , i=1,2.

for 0 < s < t. Now since the V 's are simple, it is immediate that

f' V dC= f' Vd~1  f d 2 ,as0; m  3 - 0 m + f 0 Vn C 2' a's.

0 ( s < t. Let m- and use the right-continuity of the sample paths to

complete the proof. Q.E.D.

Property 3. Let V be integrable with respect to z c C over [0,t] anda

suppose that (V k } is a sequence of integrable but not necessarily simple

processes such that

P-lim f n(xVk (u)-x V(u)) dM(x,u) 0.
k- aJx[O,t]

Then

P-lim sup Io d Vd i 0.
k- O<s<t

In particular if

k if V(u) > k
Vk(u) V(u) if -k < V(u) < k

tk if V(u) 
< - k

then

P-lim sup Io Vk d - foV di - 0.
k- 0<s<t

Proof. For each k let Vkm, m=1,2,... be a sequence of simple processes

such that

, " _: ," t. - : - - T • ., '--" .7.".."."....-.".".."."................'...".......'......."*""" ." " ." ". ..
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P-lrn V dC -J Vidc' a.s., O<s<t
m+O

and hence

0 c 1 1 + 2 V2 d 1  0 v 1 d c 2  0 V 2d as

Since the integrals have right-continuous paths, equality holds simultaneously

for all s k 1O,t]. Q.E.D.

Property 2. Let CI and C2 he two independent processes in C a. Then

Ci + C2 is in C . If V is integrable over [O,t] with respect to

= + then V is integrable with respect to both tI and

Furthermore

P{ f' Vd% = fS VdCl + fS VdC2, 0 <s<t} = 1.

Proof. Let Mi denote the jump-time Levy measure of c,, i = 1,2,3. Then

M 3 = M1 + M Now by hypothesis,

f n(xV(s)) dM3 < M a.s.,
xJx[0, ti

and there exist simple processes V such thatm

P-lim f n(xV (s) - xV(s)) dM = 0.
m + °  aJx[O, t] 3

Since n(x) is nonnegative,

0 r n(xV(s)) dM 1  < - a.s.

and

P-lim I n(xV (s) - xV(s)) dMi  0 a.s.
m- CaJx[O, ti

.V -.. ". ..- .'- -..V -.-.'- -" - .--V - -'. .-".-.- '-i.-' '-. .--- .- - . -; ' '.".- .- - .2 - .. - .. . . . ..-. .
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if c Iand c 2are any two real numbers, then c1 V 4- +c 2 V 2is integrqble

with respect to C and

P f fs c V1 + c2 V2 d c1 fs V1 dC +-c2 fs V dt, <s<t} 1.

Proof. If V1 and V2 are both simple, this property is obvious. To prove

it in general, let V Mand V 2,be sequences of simple processes such that

P-lin f n(xV im(S) - xV I(s)) dM(x,s) = 0

for i. = 1, 2. Then by Lemma 2.3 and the definition of n(x),

n((x c I V1 + x c 2 V 2) - x cI ViM4 +~ x c2 V 2m))

<4 max(c 2IciI) n(xV- x Vim

+ 4 max (c 2, Ic~ n(xV2  xV)

so

P-lin f n((xc V I(s) + xc 2 V2(s)) -(xc 1 V I (S) + xc 2 V 2 m(s))) dM =0.

Also by the integrability of Vi and V2

f n(x c1 V 1(s) + x c 2  2 (s)) dM(x,s) < a.s.
zJx [0, tI

Thus CIVI + c2 V2 is integrable, and furthermore by Theorem 2.2

f scl V1 +c 2 V2 d = P-lim f scj Vi + cV d4.
0 0 lm 2 2m

But since Vi1M and V2m are simple,

fc1 Vi + c2 Vm d = cl fs Vim d, - 2 f 2  d

Again it follows from Theorem 2.2 that for i1I, 2
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Yet P-lim ft V dC may not exist. For instance, take V2n 1 and V 0.
n 0 n 2n+l

The proof of Theorem 2.2 is the same as the proof given by Kallenberg for

his theorem. The only change necessary was the adaptation of Millar's

inequalities to the present setting.

Let C denote the class of all stochastically continuous adapted

processes c(t) with Independent Increments, with paths in D[0,°'), without a

Gaussian component and satisfying the conditions

(I) (o) = 0,

(ii) E (t) = 0 for all t > 0,

(iii) a {(t+h) - (t); h > 01 is independent of A tfor all t > 0,

and

(iv) the jump-time Levy masure M of C is concentrated in

cjx(Oco).

Definition. A predictable process V(s), s > 0, is integrable over [0,t] with

respect to C E C if

f n(xV(s))dM(x,s) < - a.s.
CJX[0, tI

If V is integrable, the limiting process fo Vd will be called the

stochastic integral of V with respect to C and will always be chosen so

that the sample paths of the integral lie in D[O,t].

We now give some basic properties of the stochastic integral 0t V dt.

Property 1. If V and V2  are integrable with respect to Ca e Ca and

. 2 .
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(2.2) and let (ft V dC)' be the limiting process having paths in D[O,-). By

considering the mixed sequence V1 , V'1 , V 2 , V 2 , ... we see that

f f Vd (f t V dc< )' a.s. for each t > 0. But since the paths of (ft V d<)'

,0

* -are right continuous,

P (ftt VdCa t > 01 1

Remark. Theorem 2.2 is an extension of Theorem 3.1 of Kallenberg [2]. In his
tVd

theorem Kallenberg states the existence of the stochastic integral, f0 Vdi

under one of the following two conditions:

(1) r n(x V(s)) dM(x,s) < - a.s., and
Jx[0, ti

ii) f Ix V(s)I Al dM (x,s) < - a.s.
R ×[O,t]

* In Kallenberg's setting has stationary independent increments so

*" dM(x,s) = dMi(x) ds. Under condition (ii) the sample paths of are of

bounded variation over [O,t] with probability one, and so, as Kallenberg

noted, one may simple use the Lebesgue-Stieltjes integral. For this reason

condition (ii) was not extended to the present setting.

Theorem 2.2 differs from Kallenberg's theorem in another respect. In

Theorem 2.2 the integrating process has jumps of absolute value not

greater than a. In Kallenberg's theorem, no such restriction is needed. For

example Kallenberg's hypotheses are automatically satisfied if M is

concentrated in Jx I[0,). In particular if V is any process and if V isn

any sequence of simple processes, then (i) holds and

f n(xV (s) - xV(s)) dM(x,s) = 0.
JX[Ot]

I

...........................................................................,.....................:.:...::::::::::::::i::i:: .::. :. :i::i:i.-
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But g is continuous and strictly increasing on 10,-) and g(O) = 0, so g- is

continuous and strictly increasing on [0,) and g- (0) = 0. Thus

sup I fv-v dl > g_ ( a) < c, ,m > n.
" ~~O<t<T n ---

It follows that for all c > 0 and all T > 0 that

lim P { sup t Vm- VndL- > , 0
m,n+  O<t<T :0

Pick an increasing sequence (nk), positive integers such that if m,n > nk,

then

P ( sup ftA V - V dC.I > 2-ky <2 k
O<t<k m n

and so by the Borel-Cantelli Lemma

P {lim nf sup f0V - V dj <2-kj) 1
k + O t<k 0nk+1 nk a

Therefore with probability one

~k-1

foV d; --  fov -V dC + ftV dc
kJ1 nj+ j o n1

- converges uniformly on each bounded interval to fo Vd a. But since V is

nk

simple, the paths of ft Vn dC lie in D[0,w) and consequently so do the

paths of ft Vdic. Furthermore since

00t<T d<t<T nk  V-<t<T k
P -li sup If t Vmd~ca  ft V d cjP iur sup If0V - JVd = 0

m + 0 O<t<T

which proves (2.3).

Finally, let V' (t) be another sequence of adapted processes satisfying
n

c'- -, ..:'- - - .- -. , . . .-. "-, .. - - , , - , . -. .-.. .- -... ' , -.
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P-urn f g(x V (s) -xV(s)) dM(x,s) 0.
n- aJx[O,t]

Now g(x+y) < 4 g(x) + 4g(y) (Lemma 2.3) so

f g(XV (S) - xV (s)) d M(x,s)
* ctiax[0, ti

<4 f g(x V n(S) -xV(s)) dNM(X,s)
COX x [0, t]

+4 f g(xV(s) -x V m(s)) dM(x,s).
czx [0, t]

Thus

P-urn f g(XV n(S) -v V (s)) dM(x,s) 0
n,m-- ctJx[O,tI

*Now let c be any positive number and choose n 0 so large that if n,m > no, then

3

P{ f g (x V n(S) - xV m(s)) dM(x,s) > E/32} < E/2

Consequently for m,n >n0

P{ sup Ig(fo Vm - Vn d C) 11/2 >E

O<t<T

t 1/2 > ,f3
< Pt sup Ig(ft V -V dI ,J gx s)-cV,(s)dM < E /32}

+ Pt f g(XV n(S) -x V m(s)) dli > e 3 /32}
czJX[O,T]

<~ ' f Vm su d~aj 1/ f g(xV (s) -x V (s)dM+ E
O<t<T If Vm Vn-e ix[O,t]

2

2
By (2.4) with P 3/E: and 0 E/

P{ sup (g( ft V -V dC) 1/2 > ~ e , n, mn > n.
0< t<T

d, .....................-
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Now let T > 0 be arbitrary and suppose that V(t) is a simple adapted process

of the form

i-1
V(t) )' V1 I (t) + v 0 1 { 0 }(t)

i=Oi(t i-f-i

where 0 t to < til < ... < t= T, where V is A t-measurable andv0 is

A -measurable. For brevity put AC, = (t )-t(t ). We have
0 a. i+1-1

j-1 J-1
E [g(V IAC1 VI 1  K~ 2 ) f g(V x) dM(x,s)

10 1=0 czix(t ili1

-2 f g(V(s)x) dM(x,s).
aix[0, T]

Since g' Is concave and increasing on (0,-), Lemma 2.3 of Kallenberg [2] is

applicable and says

(2.4) Pisup~ I g(ft Vd%()I"12 > 2 p f g(xV(s)) dM(x,s) + 6 1
t c D 0 ax[O,T]

< 2

where D is any finite subset of [0,T] and where p and a are any positive

numbers. Let ID } be an increasing sequence of finite subsets of [0,T] such
n

that D'=-U D is dense in [0,T]. By monotone convergence (2.4) holds with D
n

replaced by D'. But for simple V the sample paths of ftVd are right-
0 O

continuous so (2.4) holds with D replaced by [0,T].

Let V(s) be any aeipted process such that (2.1) holds, and let V n(s)

be a sequence of simple adapted processes such that (2.2) holds. Since

g(x) < C2 n(x),
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If (V (s): n=1,2,...} is any sequence of simple adapte.l processes such thatn

for every t > 0

(2.2) P - liM f n(x V (s) - xV(s)) dM(x,s) 0,
n* aJ×[O' t]

then there exists a stochastic process, ft Vdl, with sample paths in D[O,-]

such that for every T > 0

(2.3) P - lir sup{t V dr - ft Vd I: 0 < t < T} = 0.
n +0

Furthermore, if {V'(s)} is another sequence of simple processes satisfyingn

(2.2) and if (ft Vda)' denotes the corresponding limit having paths in

D[O, - ], then with probability one, the paths of ft Vd and of (ft VdC)'

are identical.

Proof. Let V (t) be a sequence of simple adapted processes which satisfies

n

(2.2). Put g(x) = x2 /(l+ xi) then according to Lemma 2.5 g(x) < C2 n(x) and

so for every T > 0

f g(xV(s))dM(x,s) < a.s.
(J x [O,TI

Now g(/x) is concave and strictly increasing on 10,-) while g(x) is

convex on [0,-). So by Lemma 2.4a if G(u) Eg(uI[% 1(t+h) - a(0)) AtI

then G(u) < 2 f g(ux) d(M (x) - M (x)). Hence if Y is any At-measurable
-t+h t t

r.v., then

E {g(Y[Va(t+h) - r,( t))IAt} G(Y)

< 2 f g(xY) dM(x,s).
• . aJx(t, t+h]

-. -. '.. . . . . . . . . . . . ... -."-...... % :... - " ::----..-.".-. .-.-.-.-.-. ,.-.". .- •--
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It is necessary to apply this result without the assumption of stationary

increments. Such an application may be Justified by observing that if p is

any infinitely divisible distribution with Levy measure v, then there exists

a stochastic process X(t) with stationary independent increments etc such that

2
the distribution of X(1) is p. Since Eh(X(1)) and Eh(X(1) ) depend only on

the distribution of X(1), we may restate Lemma 2.4 in the following

alternative form.

Lemma 2.4a Let Y be an infinitely divisible r.v. with Levy measure v and

without a Gaussian component. Let h be a concave strictly increasing

function from [0,-') onto [0,-) such that h(O) - 0. Assume that the support of

V is contained in [-a,a]. If h(x 2 ) is convex on 10,-) and if EY = 0, then

Eh(Y 2 ) < 2 f h(x 2 ) v(dx).

2
Lemma 2.5 If g(x) = then there exist positive constants C and C

1 2
1+ x

such that

C1 n(x) < g(x) < C2 n(x) x c R

Proof. Since n(x) and g(x) are even functions, it suffices to prove the Lemma

for x > 0. Consider the ratio, r(x) g(x) Obviously, lim r(x) =1= lim r(x).

n(x) x+O x"

Define C1 E inf(r(x): 0 < x < -} and C2 - sup{r(x): 0 < x < }. Since r(x)

is continuous and never zero on (0,o), 0 < C1 < C2 < . Thus

C1 . < C2, 0 < x <

Theorem 2.2. Let V(s) be an adapted process satisfying the condition

(2.1) f n(xV(s)) dM(x,s) < a.s., t>O.,'-'[cJ4O, t]

* . . . . . .,
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(e) lm f n(x V(s) - x V (s)) dM(x,s) 0.
•x[o,t r

Proof. This is an obvious special case of Theorem 2.1 and Cor 1, so no proof

is given.

The stochastic integral of a simple process has been defined in the

introduction. We now consider the problem of defining the stochastic integral

*. of a process V(t) which satisfies the condition

j n(x V(s)) dM(x,s) < - a.s.
aJx O, t]

We will show that if V is a sequence of simple processes such that as r +
r

r n(x V(s) - x V (s)) dM1(x,s) 0 ,
.-. JJX×[0, t]r

. then ln fo VrdC exists a.s. Of course we define ft Vd lLm ft Vrd.

We will need a result of Millar (Theorem 4.1 of [4]) which he obtained

for stochastically continuous processes X(t) with stationary independent

increments and without a Gaussian component. Assume that X(O) = 0 and that

" the sample paths of X lie in DtO,-]. Let v denote the Levy measure of

.* X(1). Millar proved the following.

Lemma 2.4 Let h be a concave strictly increasing function from [0,°') onto

[0,0) such that h(0) = 0. Assume that the support of v is contained in

aJ = [-a,a]. If EX(t) = 0 for all t and if h(X 2 ) is convex on [0,°), then

Eh(X(t) 2 ) < 2t f h(x 2 ) v(dx).

In the above statement we have inserted the actual bound obtained by

.* Millar in his proofs.

I . . . . . * ~ .

.. . . .. . .. . . . . . . .. . . . . . . .. . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . .
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2 22 E x (V(s) V(s)) dM
anix[0, t]

+ 2 E f x 2 (V k(s) - V (S)) 2 dM
UdX[0, t]

and hence

lrn E f x 2(V(s) - X'i 'D dM =0.
k-~ aJx[0,t]k

Since by the definition of V k(s), IN k 1. < 11 IV 1 iI_ < k A IV II.. Q.E.D.

Property 4. Let c F_ C (Xand assume that V is integrable with respect to C

over [O,t]. If

E f x 2 V(s) 2 dMoo<

then

E (t V d =0, and

E {tV d}2 E f x2V(s) dM1.

Proof. Let (u) = E expfiuc(t)l denote the ch. f. of c(t). Then

* (u) = exp f e eiux-I-lux dM 1. Differentiate twice and evaluate at u 0 to

2 ,

see that E{ (t) 2j r x 2dM We use this to first prove the property in the

case that V is simple. Suppose that 0 =to 0( t1 < t 2 <... < t n t and that

n-i
V(s) = V~ '(tI t (s)~ + W 0 I{0 ) (s),

where V is A - measurable and W 0 is A 0- measurable. Then

.. . . . . . . . . . . . . . . . .. . . . . .
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t n-i
E (f0 V dtl E { V V (t~ -C(t)

n-i
E ) [EV E {r(t ) ~ A

i+ i

Simiarly if = t1 1

n-

J=

0= < <tt 1 tu

-~f V E{ 2 0.2 M
0=

Siilryi A, = E~ f~l ( s) x M

n J[0l t

This proves Proert (A for sipl V. AC

No le V be an knerbepoesstsyn h odto

2- 
2

E{ ~ ~ ~ ~ ~ ~ [ 2 f Vxs dM ( hnacodn oLmma25teeeitsml
aix[0 ti~to11

prcese V V(s) suc that

Qj. (0 . ..
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2 2
lrn E f x [V (s) -V(s)] dM 0.
M+00 cixIO,t)

Since n(x) = x A xi <x

P-lrn f n(x V (s) - x V(s)) dM 0,

w- - .•~

so by Theorem 2.2 It follows that

P;Jm.~r f tV dr, f tV dt.

0 0,

Now V m(s) - V k(s) is simple so by the first part of the proof

tVd - t }2 =E{ f 2 [ (s) - 2 d) 2 O
-... '"kx L [Ot] rn k

The right side tends to zero as m,k+- so f~V d is Cauchy and converges

in L norm. Since this sequence converges to fV d in probability, it

coneresto 0f V dC in T also. Thus

lim E n(f V d(s E {ft V dC} 0, and

tJt V d } E {ft V d

Therefore,

EftVd }2 = lirn E f x 2V (s) 2dM =E f x 2V(s) 2dm.E 0  r+W aixxt] m amx(otI

Q.E.D.

For Property 5 below we need to introduce the notation L-f V dt for the

pathwise Lebesgue-Stieltjes integral of V with respect to 1over[,t

Such an integral is defined when the path of C is of bounded variation over

0,t, and this is the case a.s. provided x dI (x.s) <

Jx[O, t I

.....................................................hy an

............................................

. . . . .. . . . . . . . . . .
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Also in Property 5 we use the assumption that the integrand V is

predictable. The proof of Property 5 below is essentially that given by

Millar for his Property 6 in [5].

Property 5. Assume that V is integrable with respect to C c C over (O,t].

Assume further that f IdM(xs) < -, i.e. that almost every path of
aJx[0, ti

is of bounded variation over [O,t]. Let dlI denote the total variation

measure determined pathwise by C. If L- ftIVldl < a.s., then

P{-0 V d? = L- f0 V dC, 0 < s < t) 1.

Proof. Without loss of generality we may assume that M is concentrated on

(0,a]x[O,t). Let S denote the class of all bounded simple processes and let

H denote the class of all bounded integrable processes satisfying Property

3. Then S is a vector space with the property that if f and g are any

two elements of s, then f A g e S. H is also a vector space of functions

defined over 2 x (O,t] and contains S. Let V be a bounded nondecreasingm

sequence of functions in H which converges to V. Then by the Dominated

Convergence Theorem

lim E { f x 2 (V(s) - V m(s)) 2 dM(x,s)} - 0.
r.m4-w aix[0,t]

From Property 4 it follows for 0 < s < t that

E{ (fO Vm dC - fO V dC )2} < E f f x (Vm (S) - V(s)) 2 dM(x,s)}
..Jx[0,t]

"0 as m + 00

That is, Js V di converges tos V dC in L2(Q2) for each s E [0,t]. On the-- m0

other hand

.....
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11[i L f' V di L-f V d a.s., 0O< 9< t. Thus

fV d4 L-f' V dc, 0 < s <

*and since both Integrals have right -continuous paths, equality holds

simultaneously in s f [O,t] outside a null set. This proves that H is

closed under bounded nondecreasing limits. By the remark following T 20 of

*Meyer [31 (Chapter 1) It contains all bounded predictable V. Now let V be

nonnegative and predictable. Define{p if V(s) > p

V(s) if 0 < V(s) < p.

Then for each p, V~p c H, and so

'0 d L- fo V dC.

* Now according to Property 3

P-lim sup If ~)dc - f'V dCI
p-'0 0(~

Write C(t') = (TW) - m(t') where the sample paths of T are nondecreasing and

where m(t') = f x dM(x,s). By the Monotone Convergence Theorem

lim L- ds Vp d L- sV d4 a.s. and

lim L- fs V(P~dm L- V dm a.s.

* Since dI~ + dm and since by hypothesis
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It

L- f0V d~i <( .s

L- f 0V dC< -a.s. and L- ft Vdm < a.s.

Hence lrn L- 0~ V~ d4 i - 0 V dr, 0 < s < t. Consequently
p+M

= ur L- fs V Pd

I - f V dC, 0 < <t

Since both rSV d and L- fsV dc have right-continuous paths

Pi'f V dS =L- fsV dC, 0 < s < tj =1

This proves Property 5 for nonnegative V. For general V, the Property

follows from the decomposition V = V~ - V. Q.E.D.

Property 6. If C C ,if V is integrable with respect to C, and if

E f x2 V(s) 2 dM(x,s) < then ftVdC and

0f Vd-)2 - f X2 V(s) 2dM(x,s) are martingales.

Proof. We first prove that property 6 holds for simple V. Let 0 < r < t.

Since V is simple, there exists a partition 0 =t 0 < t1 (...tk t of [0't)

k-i

such that V(p) if ( V+ v I for 0 < p, < t. Here V i

measurable. We add r to the partition if necessary so that r t~ for some

< . e ='C C(t1 ) -(ti) EP. E(. IAt and Ti ( ~t 1

i+ St+

Is
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t k-1
fvo d = V dC V A "

i=O

Since V and ACi are independent, and since c £ C EA i = 0, and

E (Vi) 0 0. Thus for i > J, E (Vii) = E E (V AC ) 0, while for I<J,Ii I

E (V AC ) = V AC since V AC is A -measurable.

It follows that E (ft Vd ) = V AC = VdC which proves that J tVdC is0i= 0  i 1 O 0d 0hc rvsta Ei

is a martingale.

Next calculate

k-ik- I

(f Vd) 2 = 1 V1 2 (AC)2 + 2 k 1 (V AC )(V AC).
0 11 1 1 mi=O) m=l i=O

For m > J,

E (V2 (Am E E (V2 (AC)2

j m m jm m m
= E [V' E (A )2j

j m m m 22E fEJ x V dM(x,s).
i aJX~tm , tM+l]

Thus

i k-1

EI 0 V (At) 2) = E f x V(s) 2dM(x,s)
=0 aJx(r,t]

2 2
+ y V 2 (A )

i=O

Also if m > J and m > i,

E (V A i V A ) =E E (V I V A )
i im rn ml i m m

= E [ViA t Vm Emt(L; )J

=0

1. . . . . . .

~]
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and for i<rn<j,

E (V A V AC ) V AC V Ar,
ii in M i i m m

Thus

k-i n-i j-i rn-i

E4( V V Ar V Ar)= ) ~ V A V ACML __ i= 1 M) V 10 1 m m

From the above we get the equation

E (ft VdC2 = E f x 2V(S) 2dM(X,s)
i 0 JaJx(r, ti

j-i 2 2 J-1 rn-I
+ ), V (AY 2+ 2 ) V1 A tc V m t

=E f x 2V(S) 2dM(x,s)
a cJx(r,t]

+ (Jr Vd )2.

From this we see that

E (tVd 2_ VS dM(x,s)] =(r Vd)2_ f xV(s)2 dM(x,s)

cz0 Jc0, tI 0 cz.Jx or

which proves that (ftVdt) 2- f x 2V(S) 2dM(x,s) is a martingale.
0cix[Q, ti

Now consider a general process V(t) such that

E f x 2V(S) 2dM(x,s) < ~
cEJ X O, -)

Then according to Lemma 2.6 there exist simple adapted processes V m(t) such

that

lrn E f x2 (V(s) V V(s)] 2 dM(x,s) = 0.
M-+W aJx1O,-)

By Property 4,

F(tVd - rt Vm E f x 2tV(s) -V (s)I dM(x,s),m acix1,tI
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and consequently

1r, E(f' Vd - i V,) 2 =.

So for r < t

E (ft VdC A) limr E (ft V dtfA)

= fr V di
= m0 mM+ o

j0 VdC.

Also,

(ft Vdz)2 - x2 V(s) 2dM(xs) I A}
Jx[O, t]

lm E I (ft V dt )2 f 2 Vm(s 2 dM(x,s) A

= lirn I (r V d ) x 2 V (s) dM(x,s)
m+ 0 aiJxo,rt]

= li,.,, { (fr v r 2 -- f x2 V(s)2
cx~x0,r]dM(x,s)}.

fO V dC) 2  f x V(s) 2 dM(x,s).a x[O,r]

(To see that E { f x2V (s)2 dM (x,s) - f x2 V(s) 2dM(x,s)} + 0.
aJx[o, t] m aJx[O,t]

as m + observe that by Cauchy - Schwarz

2 2 2 2

E x 2V m(s) - x V(s) 2 dM(x,s)
aJx[0, t]

E f (xV (s) - xV(s)) (xV (s) + xV(s)) dM(x,s)
aJx[0,ti

< {E f x 2(V M(s) - V(s)) 2 dM(x,s)}1 /2 {E f x2(V (s) + V(s))
2 dM(x,s)}1 / 2

aJx[0,t] J[OIt] m

and while the first term on the last line tends to zero, the second term is

not greater than
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2 2 2 22 E f x Vm (s) + x V(s) dM(x,s)
aJx[o, t]

which is bounded since It converges as m +

3. The Integral.

In this section the stochastic integral ft VdC is defined for general

processes using the decomposition = b + r + CQ. This decomposition
a aI

is not unique so it is necessary to show that the integral is independent of

the choice of the decomposition. (See Theorem 3.1.)

Definition. Let V(s), s > 0, be a mensurable predictable stochastic process

adapted to the o-fields A t: t > 01. We say that V is integrable (with

respect to c) over [0,T] if for some a > 0

(a) j n(x V(s)) dN(x,s) < - a.s., and
aJx[0,T]

(b) f IV(s)I dba(s) < a.s..

[0,T]

If V is as above, we define the stochastic integral ft Vd , 0 < t < T,

by the formula

I Vdt f Vdb + lim fVdi + fVd0 [0, t] ( r 0 r

where V is a sequence of simple functions satisfying the condition.r

1Im f n(xV(s) - x Vr (s)) dM(x,s) = 0.
r- aJx[O,T]

According to Cor. 3 of Theorem 2.1 such a sequence exists, and according to

Theorem 2.2, any two such sequences lead to the same limit, 0t Vd4 , except

for a set of paths having probability zero. The third term, f0 VdtM , is the

• .....:. ...- 1 -....... -.....-.. ..... . .. .. . .-.-. ..-.-. - - ... . .. --. -

". . ' , , ' ,., ,, - . -' -..' ' , " - " . " - .- " .- ." . " - " . - . - .- " , '. " ' '. . . . - ' '. . .- " . . . - " -. . ." - - ' .. - - . -' . ' . '. - . .0-



34

usual Lebesgue-Stieltjes integral. It exists a.s. since with probability one

the paths of ' are step functions with finitely many jumps in every bounded

interval.

As defined above the integral depends on a > 0. Clearly, if V

satisfies condition (a) of the definition for some particular a > 0, then for

any a c (0,a), it will satisfy condition (a) with a replaced by 3. It is

therefore necessary to show that the integral does not depend on the choice of

a > 0 for which (a) holds. Temporarily we denote the stochastic integral as

defined above by a - ft VdC to indicate the possible dependence on the choice

of a.

Theorem 3.1 Suppose that V is both a- integrable and (- integrable over

[0,T]. Then

a-ft vd = - fVdr, 0 < t < T, a.s.0 0

The exceptional set does not depend on t.

Proof. By the definition of the integral,

Now b S(t) = b (t) + f x dMt (x). By Property 2,

oVd ft Vdl + ft Vd(C - t "

(3 0 a 0 (3 a

But according to Property 5,

f - 'a) = - it Vd(" "

Since (t) e W t) W t) -f x dM (x)

= ¢'(t) - 0(t) - (b (t) -b (t))

a '(3 (-J
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L - f dQ - t f ft Vd(b - b) Thus,

ft Vd(4C C f Vd(C' - - ft Vd(b b b) and hence

-f VdC = ft Vdb + ft Vd + ft Vd = f- t Vd- a.s.0 0 a 0 0 0

Since both sides are right-continuous in t,

P - ftVdr = a - ftVdt, O<t< T} 1.

4 A Complex-valued Martingale.

Let V be an integrahle process and let

t = exp tiufo Vd' - f T (x,uV(s)) dM(x,s) - iu St Vdb
R x[O,t] 0 Cx

i xw

where a > 0 and Ye (x,w) = e -1 -i I O(x) xw. In this section we show

that Z(t) is a martingale under a certain moment condition (Theorem 4.1.).

This result generalizes Prop 3.1 of Rosinski and Woyczynski [91 which they

used to establish an "inner clock" for symmetric p-stable motion.

Lemma 4.1. Let V be a integrable process bounded on Q x [0,t] and adapted

to the a-fields At. If f CxIdM(x, s ) < -, then
aj x[0, t]I

E ft Vd a = E f V(s) dM(x,s).

cJC x[O,t]

Proof. Let > a and set A = [-s, -a) V (aqj. Put ' (t = V(t) - YO

and X(t) = W' (t) - f x dM(x,s) so that X c C Since V is bounded,
A [O,t]C

V isintegrable with respect to X. Furthermore the Levy measure of X is the

restriction of the Levy measure of to Ax[O,t]. The hypotheses of

Property 5 are satisfied and so

-'-2.,.-7 ..-i'-i-'-.--i.-? i- 5.-.-.--.-- ,-(-",-.-.-.--.-,-......---..-'--.-.-...........-...-.-..- .....,. .--,.-.......
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L - f VdX ft VdX.

But L - fo VdX = ft Vd - f xV(s) dM(x,s). Hence
00 AxiO,t]

E fo VdX} Eft Vdr,', - i. { xV(s)dM(x,s)I.
Ax[0,t

But by Property 4, E ft VdX = 0, and thus
0

E ft Vd¢'x(o = E f xV(s) dM(xs).
Ax[0, t]

Since the paths of ' have at most finitely many Jumps in [O,t],
cc

for sufficiently large 6 depending on w. Since ft Vdt; and ft VdC' are

defined pathwise,

fVd " (wu) = f' Vdr,' (w)

for sufficiently large 3. Thus

lim fo Vd ;, ft VdC'.0-3 0 a

But also if g,', and C' denote the total variation measures of CI and c'

respectively, and if C is an upper bound for IV[,

ft VdC,'j < C lt'" I(10,tj) < C 1 j(10,t0). Hence

E lft VdC P I '  C E{L'I ([0,tl)

o;lO otaB I.1 o- . -,jo

- c f X dll(x,s) < ~
a x[Otl

Thus by the Dominated Convergence Theorem,

t VdC' = um . ft VdC'

0' C(3

.....................-................................ .... . .-" -"-.'.."...". .• _. • ",•.". _, ', '.'7 ' '',..................................".,....:..... ",.....-".-'."-.-"........."....'_" .- " c : ,- "



= fc xV(s) dM(x,s).
(IJ x [O,t]

Corollary. Let V be a hounded integrable process.

if IldM (x, s) < -~, then E f VdzI.IK x(s-M~~)

aJ x[O0, t I aJjO, ti

Proof. For each 11 ftVdCI is an ordinary Lebesgue-Stieltjes integral and so
0 OL

If Vdc,) _r 10 JVJ d c'

wheredenotes the total variation of dr,'. Let Y (s) and -Yf(s) denote
aI

the sum of the jumps of ~'which occur in (0,s] and have positive and negative

magnitudes respectively. Then Y+ - Y_ and as is well-known Y+and Y_ are

both stochastic processes with independent increments and right-continuous

paths which are step functions. The jump-time Levy measures of Y +and Y_ are

Mlo'-) [01-) and T-F (0"-]x-to,) where M- is defined by the equation

qF (DI x D 2) M((-D 1  x D 2). Furthermore, dl1 'I =dY + + dY_. Thus by

Lemma 4.1,

Elf t VdC'I E ft v dY + + E f0 lvi

-E f xlV(s)I dM(x,s)

(0"-) - 10,t]

+ E f xlV(S)l dM-(x,s)

-E r x V(s)i dll(x,s)
,tJ (f,t] J

.E . 1).
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Proof. We first prove the lemma in the special case that V is simple, say

k-i

V(s) = w I{0} + vIt 
J=O j :(tjtj+l]

where 0 = t 0 < tI < ... < tk t. By independence of increments

l<u, fotVdc > X<u, v >AC
E e = E e J j

= [ E e i<U 'V i>M C

j

= exp{ f io (X<U,V>)dM(x,s)
j aJ X(t ,tJ+11

II exp { f iop(x<u,V(s)>)dM(x,s)
j aJx(t ,t,+ I ]

exp ( f po(x<u,V(s)>)dM(x,s)}.
aJx[O,t]

This proves the lemma for simple V.

Next assume that V is bounded over [O,t] and let Vr be a sequence

of simple processes such that IV rI < JIVil=,r -o

lim j x 2 V(s) - Vr(s) IdM(xs) - 0 a.s., and

r- cJx[O,t]

lim I' n(xV(s) - xVr (s))dM(x,s) = 0.
r-- oJx[o,t]

Now a Taylor series expansion shows that if (x,O,) is confined to a compact

subset of R 3 , then

%O (x) - 0o(x)I = eixo-xxe (eix -ixP)I

< kx 2 1 -

where the constant k only depends on the compact set. Since

IV r: < 'IV.' <, we obtain for each u c Rp

ji ko(x<uV(s)>) - YxO(<uVr(s)>)IdM(x,s)a'J×[O, t]

< f kx 211uII'.V(s) - V () IdM(x,s).
aixto,t] r
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(The last equality follows from the Dominated Convergence Theorem since

Prop. 5.3. If 0 (x) = e i - 1I ix, then for each w * 0, there exist

positive constants c 1  and c 2  such that

C In(x) < 04o(xv)1 < c2 n(x), xE:R.

2 2

Proof. Observe that as x +0 Io(xw)i x and n(x) -- x 2  so

lim IL~(xw), w2,2.
x+O n(x)

Also observe that as lxi + ~ k W'~'l - lxvi and n(x) , lXI, so

lim _____=l.

1XI W 1n(x)

Furthermore '40 (xw) = 0 iff Re Yp0 xw) = 0 and Em %p(xw) =0. That is,

y 0 (xw) = 0 1ff cos(xw) = 1 and sin (xw) =xv. The last two conditions are

equivalent to xv 0, i.e. x = 0 (sin x < x if x > 0 etc). Thus since

I tP0(xw) I and n(x) are continuous functions there exist positive constants

C,= c (w) and c 2 = c 2(w) such that

cl < hwx (x) -c* Q.E.D.

Lemma 5.4. Let V(s) be a nonrandom Borel measurable Rn-valued function on

[0,tl such that

aix[O, ti

Then for all u c R

Ec = exp {f 4,0(x<u,V(s)>)dM(x,s)}

ixfot

where (x) =e ix 1 ix.
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f 'Vd; 1 ur f 'Vdt

Consequently,

i~u rtVdce> uf-d, >
E e JO lirn E e 0 ''

111 p XPAfJOt (0 t x<u,V(s)> 1 dM(x,s)1

exp( f e ix<u ,V(s)> 1 drl(x,s):,.

This proves the lemma for bounded V.

INow suppose that V is not bounded. Let

kif V(s) > k

V k (s) Vi(s) if -k < V(s) < k

-k If Vi(s) < -k.

Then lim Vk(s) = V(s) for all s c [O,t). Let T denote the time of the

j t jump of V' in [0,t] and let Ar(T )denote the magnitude of the jt

jump. Since ~'has finitely many jumps in [0,tl

f'vdl' = V(T )A12a(T) (a finite sum)

=i un k v(T .)A '(T)
k- jaj

Hence,

E e =lim E e
k 0

- im ex f eix(u,Vk(s)>.. dM(x,s)l
1'+ c Jx[ot]

-x f eix~uV(s)>1l dM(x,s)).
Cj-Ot
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It follows that

i<u, f-tVd4W > ix<u, V Cs)>
lrn Ee 0 n ua= i expi f e n -1dM(x,s)}

n+GO +00 Ax [0, t

= expf f ei~u V(s)>

AxIO,tI -1 dM(x,s)1.

That is,

I<u, ftVdC- > ix~u, V(s)>
1'-C 0 'a = expt f e -1 dM(x,s)}.

Ax[O, ti

Q.E.D.

Lemma 5.2. Let V(s) be a nonrandom Borel-measurable Rn-valued function on

[0,t). Then fr all u CiRp

i<u, ftVd?2> ix<UV(s)>
E e =exp{ Cf e -1 dM(x,s)).

aJ x[0,t]

Proof. We first prove the lemma under the assumption that V is bounded over

[0,t]. Let 5 be any positive number greater than a and set

Aa [-63, -a) (a,31. Then according to Lemma 5.1

Ee -' exp{ f e -ldM(x,s)).
A ax(O, t]

Since the sample paths of ~'have finitely many jumps in [Q,t],

;;(s'w) CatB (s,4), 0 < s < t

for 3 > 3% (,j. It follows from the pathwise definition of f-tVd4' and of

ftVd" as the usual Lebesgue-Stielties integral, that

0 a~f

flence
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so IWI~ is a finite measure.)

Then

Vu. t~d- >iuf tvW '>

Ele 0 '10-e 0n tB

< E <11, f'Vd > -<u, . C">

1 dIu o V-V d1'n

< ~ .JOt V-V dr' 11

But according to an obvious extension of the corollary to Lemma 4.1,

!frt V-V dV', < f lx(V(s)-V (s)IM(x,s),
dJo n P -Ax[O,t] s)

and hence

lim E~rtV -V dC' 1I=O0.
n~n

Thus

Ee 0 a'I lim Ee 0 ,

On the other hand by the first part of the proof

Ax{O, ti

Now similarly,

If eix<u9Vn (s)>- 1 dM(x,s) - f e ix<uV(s)>- I dM(x,s)I
AxIIO,tl Ax(,t]

< f xj 'uI *IVn( S)-V( s) IIdM(x, 5)

-0 as n
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' ,(s) Y {A '(T ): 0 < T < a and a < lA '(Tj)I < 3}.

Lemma 5.1. Let V(s) be a bounded Rp-valued nonrandom Borel-measurable

function on [0,t]. Let 3 a and put A = [-13,-c,)U (a,O3]. Then

i<u, ftVd a 1> i~,~)_

Ee = exp { f e ix~uV(s)>1 dM(x,s)}.
Ax[O, t]

Proof. First suppose that V(s) is a simple process, say

k-1
V = vo01t) + V ItI(

J=O ( Jt+1]

where 0 = t0 < t1 < t2 < ... < tk = t. Since a,8 is right-continuous and

since C' (0) - 0,

k-i
0 'a J=0 J J  ,

where A., 4, 1 = , ( tj )  C ,(tj) By independence of increments,

j aa a,8 J+1 a,8 j

Eei<U'ftVd~a,> = H

J=o

k-I ix<u,vj>1
- I exp{ f e 1 dM(x,s)}

J=O Ax(t ,tJ+l]

k-1ixuVs>
k-i exp{ f e1Xu'5)>- dM(x,s)}
J=O Ax(t,'tj+il

This proves the Lemma for simple V.

Now let V be any bounded Borel-measurable function on 10,t) and

choose simple Vn such that

li,, f .,,V(s) - V n (s)ldM(xs) - 0.
n w A×[O, t]

(This is possible since step functions are dense in L ([ot],Iti )

where Iju(D) f IxIdM(x,s)
AxD

o. . . -o -, -. . O . . o -. , , % -. . -- -.. . • - ,. .. .. •.- . . . . . ..•. . . . . . . ..," . ," • . '- ° .* ., .

• '''°" 'J "" "- J" " "" " " "- r •,.", " r _" . . . . . .".. . "'"" - . - -". . . . .." " "-.' "' ' " ."''/ ""% " " -" - :",q
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5. Characteristic Functions and Independence

Let V I(s), ... , V C s) be nonrandom Borel-measurable integrable

functions on [0,-). In this section we compute the joint ch.f. of

f-Vd,..., f'V dC and establish necessary and sufficient conditions for

Vi(s)

these integrals to be independent r.v.'s. Let V(s) . ,and let

V (s)
(p

<u,v> denote the usual inner product of two vectors u and v in Rand

let NO' = <u,v> 1/2  be the Euclidean norm. Since each V1i is integrable,

there exists ai > 0, and simple R -~valued functions

k

Cr (s) =v 0 1 to I_
J= J (trj'trj+i]

where 0 =t O< t (l< . < t rkr t, such that

P-urn n(xV(s) -V (cr) (s))dN(x,s) = 0

Let C(s) = b aCs) + ca(s) + ;,(s) denote the corresponding decomposition

of the process Ct). Since V is nonrandom and since the processes and

C' are independent,

Ee 0 -e a Ee 0 *.E e 0

We will first compute Ee and then Ee

V<u, f -vdiO'>
To complite Ee 0we will use a truncation argument.

For iA > ai, define C alC s) to be the sum of those jumps of which occur

In the time interval I0,s) and have absolute value in (cz, ]. That is,
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Car. (Rosinski and Woyczynski) Let C(t) be a symmetric p-stable motion

(i.e. C(t) has stationary independent increments and COi) is symmetric and

stable with index p) where I < p < 1. Let V be an integrable process

such that

E exp tr ft IV(s)lPds} <

for every r>O0 and t>O0. Then for every X c R

ZMexptiL ft V dr4 + Lt~ft(V(s)lPds}
is a complex-valued martingale.

Proof. Since C(t) is symmetric b a(o) -_0 and by the well-known formula

for the ch.f. of a symmetric stable law (dM(x,s) = xI P-1dxds)

11 a (X,XV(s)) IXIP'dx =IXIpIV(s)(p
R

and so ZMt above is the same as the Z(t) defined in Theorem 4.1. A

straight-forward calculation shows that if

E exp {r ftIv(s) I ds} <

for every r, then

E exp {fj n(xV(s)) I x(_Pdx ds) <
czJx10, t]

for some a > 0. Q.E .D.
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If xe J,

I hu*II (x'uV (s) e eixuVp(s)-ij < 2.

Thus [(x'uV (B))I < n(xuV(s))I (x) + 21c~(x), and the right side is

integrable with respect to M a.s. Then by the Dominated Convergence

Theorem,

11M f 'P(xuV (s))dM(x,s) = R j(x,uV(s))dM(x,s)
Wp00 R x 0, t] R ×[O,t] c

Consequently,

Irm Z (s) = Z(s) a.s.

In order to conclude that Z(s), 0 < s < t is a martingale, it suffices to

show that Tp(S)Ip=l is bounded above by a r.v. having finite expectation

since we may then again invoke the Dominated Convergence Theorem. But

ZP(S) =exp { f 1 - cos(xuV(r))dM(x,r)}

R x[O,s]

Now lm 1-cos(uO) 1 2 l-cos(uO) = 0, and this ratio is continuous in
6O0 2 Q4.O-

e so there is a constant c = c(u) such that 1 - cos(u6) < cn(e). It

"" follows that

I f 1 - cos(xuV(r))dM(x,r) < f c n(xuV(r))dM(x,r)
R x[O,s] -ax[O,t]

+ 2M(aJcx[Ot])

*: Thus

[Z(S) I < e2M(aJc[Ot]).ec 
fJxOt]n(xuV(r))dM(xr)

By hypothesis the right side has finite expectation and so Z(s), 0 < s < t

is a martingale. Q.E.D,

."

oI

..................................................
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2

°- Again the convergence is bounded since 1 - cos 0 < min(2,( /2) so
2 2

-Z(S)l < exp fu f x dM(x,s) + 2M(Jcx[O,sJ)}. It follows that Z

Jx[Os]

is a martingale. Q.E.D.

Theorem 4.1. Let V be an integrable process which satisfies the condition

that

E exp{ f n(xV(s))dH(x,s)} <
i x[O, t]

for some a > 0. Then the random variables

Z(s) - exp {iu ft VdC - f *P(x,uV(s))dM(x,s) - iu ftVdb
Rx[O,s]

form a martingale over the a-fields A8 , 0 < s < t.

Proof. Define processes V by
p

r p if V(s) > p

V (S) V(s) if -p<V(s) <p
p 

V()-

-p if V(S) < -p

According to Lemma 4.3

Z (s) = exp{iuftV d f (xuV (s))dM(x,s) - iu ftvdb }
" P R 40,s] a p 0 a

- is a martingale. Now by Property 3, lim fgVdC- fZVd ,, a.s. And also

p+W 

p

lim fs Vpdta, = S Vd' since for every w the integrals with respect to

are finite sums. Thus lim ft Vpd - fIVdC. To see that

f 4 (x,uVp (S))dM(x,s), converges a.s. to f P(x,uV(s))dM(x,s),
S4[o,t] R ×[O,tl a

* we need to bound the quantity lla(x'uVp(S)) by an integrable function

relative to M. Note that leio- I - i0f < (1/2)02 < 202 and also

e - 1 - <_e i - 1i + I<_ 2101. Hence leie - 1- iel < 2n(O), so

~(x,uVp(s))l < n(xuV,(a))

< n(xuV(s)) if x c aJ.
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lrn E f liP x'uV(s))- 4) (x'uVr(a)) IdM(x,s) -0

and so

P-li. f i(x'uV (s))dK(x,s)
r+00 Ojx[O'tJ

f CL 4(x,uV(s))dM(x,s).

Put Z r(s) exptiu f'V d(L + t 1 )-f )x'uV (q))dM(x,q)}.

Then

P-lrn Z6r (S) z 6(s), 0 < s < t,

where

z(S) =expfiu fgsV d(C + - f P(x'uV (q))dM(x,q)}
0 r a 0'6 SJXIO's Ia

But also since 1-cos 0 < (1/2)6 2 0 6 R ,

z r S expf f 1-cos(xuVr (q)) dM(x,q)1

2 2

_x f xdM(x,q)1 <

Thus if 0 < s I < s 2 < t' the Dominated Convergence Theorem together with

Lemma 4.2 implies that

lZ (s 1)

Now let 6 +' and note that as in the proof of Lemma 4.1,

limft Vd ' f ftVdC

Thus,

urn Z (a) Z(S), 0 < s < t.



40

El f-'VdC' IVrd4 'a I <EJ li V(s)-V,(s)IdM(X*,s)

ai X10,t]

and hence P - ur f' V dQ ft Vd~a'o It follows that0 rcdo

Pi - Ur ~d(4a + 120o) =f-tVd(C +12)

On the other hand,

f f~a(x'UV(S)) - a(x'uVr(s))lIdM(x,s)

-f $(e ixuv(s) -ixuV(s)) - (e ixuVr(s) -ixu Vr (s)) )dM(x,s)

+ f e eixuv(s)-eixuVr(s) IdM(x,s).

Ax[O,t]I

To bound the first integral on the right use a Taylor series expansion to see

that

(e ixuv(s) - ixuV(s xvr() - ixuv r (S). I(c21V(s) -Vr(s)j

*where K is a constant depending only on the bound for V and on a. Thus

*by -the choice of V
r

lrn E f j(eixuV(S) -ixuV(s)) -(eixuVr(s) _ixuV (s)) ldM(x,s)

=0.

* Also,

f ixeV"s) 4xuVr(s) dM(x,s)

<xo~)I IxVsxV(

Ax(Ox] r IdM(x,s)

ixuV(s) ixuVr(s)
and consequently, lrn E f le -e I dM(x,s) =0.

r- AxI,t]

It follows that
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Z(t )is A-measurable we obtain the equation
jti

EZ(t1 )= E{z(t1 )Ljt

j

=Z(t ).L

Thus {Z(t ):j 0, 1, .. ,kJ is a martingale and hence

E{Z(t) A} = E{Z(t k )VtA, Z(tY) Z(s).

That is, Z(t) is a martingale for continuous time. Q.E.D,

Lemma 4.3. Let V be a bounded integrable process on x [0.t0. Let a be

any positive number and put

Z(s) = expfiu fsVd4 - f p(x,uV(s))dM(xc,s)-iu ftVdb}
0 R xtO,s] L 0 a

where 'p (x,w) =e - 1I ii (x)xw. Then {Z(s),A 0 < s < t) is a

martingale.

Proof. Let C =sup{IV(s,W)I 0 < s < t, wi c Q}. By hypothesis, C < ~.We

may assume b 0. Select simple adapted processes {V Ias in Theorem 2.1
a r

such that:

(a) I VrI < C on 0 x [o,t],

*(b) Urn E x I~V(s) - V (s) dM(x,s) =0,

(c) lrn E f n(xV(s) - xV (s))dM(x,s) 0, and
czj ax[0,t]r

(d) lim E cf IV(s)-Vr(s) IdM(x~s) =0.

Condition (c) is the hypothesis of Theorem 2.2 and so

li f VdC=JtVdC a.s.
0r rda 0 a

Let be any real number greater than a. Thea according to the Corollary

to Lemma 4.1 with A =-r,)U (a,O3J,
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Lemma 4.2. Let V(t) be a simple process adpated to the a-fields A

* Then for all u c R ,and a > O,

Z(t: - expiuftVd - f eiuxV(s) I j(x)uxV(s)dM(x,s) iuf-Vdba}
0 R x[O,t]

is a complex-valued martingale relative to the a-fields A

Proof: Let a > 0 and u E R be arbitrarily chosen and then fixed. Without

* loss of generality we may (and do) assume that b () 0. Let 0 < s < t

and choose a partition 0 = t0 < t1 < ... < tk = t of [O,t] such that

k-i
V(r) = WIto} + I (t t 0 < r < tJ=O - (  Jt +

1 1  - -

where W and V are A -measurable, and for each j > 1 V is
0 0j

A -measurable. Since if necessary we may enlarge the partition to include
ti

s, we may assume that s = t. for some k < k. Then by the definition of the

integral for simple V,

k-i

i=0 i

i xw* where Ai = '(t1 ~) - (t ). Let la(x,w) = e - 1 - ii (x)xw. Then

k-i k-i
*Z(t) =Z(tk exp~iu )j V AC - ' f '(x,uV )dM(x,s)l.

J=O VJj 0 R x(t ,t+ I ] a

Set

L exp{iu VAC- f a (x,uV )dM(x,s)}.', j ex~i jAjR x(t i t J+ I ]

Since Aj is independent of the a-field A while V is A -measurable
j t jt

EeiUVIA=JIAte} = exp f ' a (x,uV )dM(x,s) }.
R x(t,,t +

7 It follows that E(Lj; At 1 =, j = 0, 1, ... , k-i. From the fact that

.. 7
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* The right side tends to zero as r + ~,and thus,

lrn f 0(X<u, V (s)>)dM(x,s)

f 4(x~u,V(s)>)dM(x,s).
cix[ 0, t

* But by Theorem 2.2.

0i rt V i = f tVd ~.
r +00

so

E exp(i<u, f-tVdC >) = rn E exp(i<u, ftV d >)

= rn exp{ f 40 (x<u,V r(s)>)dM(x,s)
r-- Jx[O,tl

= exp{ 1P 0 (x<u,V(s)>)dM(x,s),

so the lemma holds for bounded V.

Now consider the general case where

f n(xV(s))dM(x,s) <
ciix [0, t

Define

fr if V(s) > r

(r) (sV=(s) If -r < V(s) < r

-rif V(s) < -r.

Then by Property 3, P-lim f vrdt = f-tvdC so by the Dominated Convergence

limE e-E
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That is,

i<u, (r)dr
E e JO~~ lrn exp{ O J,(x<u,V (B)>)dM(x,s).

roOCJx[O'tI

*But by the preceding Proposition,

(X<UV (S C2 n(x<u,V (SM

*By the definition of n, n(cx) < max( IcI c 2) n(x), and so by the

* Cauchy-Schwarz inequality

(r) 2 (r)
n~x<u,V (s)> < maxllull, fluff )n(xllV (s)(l)

< max( lull, fluffl )n(xllV(s) ii).

Since f n(xliV(s)lI)dM(x,s) <( by hypothesis, the Dominated Convergence
ciJx[O't]

Theorem implies that

lrn f 'p x<uV (r) (s)>)dM(x,s)
r+ czJx[O,t]

f J p(x~u,V(s)>)dM(x,s).
ciix[0t t0

*This proves the Lemma. Q.E.D.

Theorem 5.1. Let V be a nonrandom Borel-nieasurable Re-valued function on

* I0O,t] such that for some ai > 0.

f n(xlIV(s) ll)dM(x,s) <

aii o, iJ

Then the ch.f. of f-~Cis given by the expression

exp {i~u, J-tVdb > + f '(x,(u,v(s)>)dM(x,s)1
0 CL Rx[O,tJ

where

YO x,<u,V(s)> - e ix~u, V(s)>- I - II(j (X)X<u,V(a)>.

Proof. This Theorem follows immediately from Lemmas 5.2, 3.4, and the

independence of '-Vr and JM .Q.E.D.O0 U ~ 0 1
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Corollary 1. Let V be a Borel-measurable nonrandom Re-valued function on

* [0,-), such that for >O, fJ n(x"V(s)11dM(xs) < -. Let Tt: j X[Ot) - ftP be

coJxf 0, t I
defined by the equation T (x,s) = xV(s). Then f-tVdC, t > 0, is a stochastic

t

process with independent increments and no Gaussian component. The Levy

measure of fJtVd4 is MT- 1
t "

Proof. Note that for a, h > 0, and t > a+h, the increment

f a+hVdC - fgvldC ft I a~h(s)V(s)d

has the ch.f. (assume b (t) 0 for simplicity)

i<u,xI (a,a+h ](s)V(s)>
exp { f e -1 - iI (x)<u,x I(a,a+h] (s)V(s)>dM(x,s)

ft x[O,t]

zexp f ei<UXV(S)>~i-=exp f e 1iUX~)- - I aj (x)<u,xV(s)>dM(x~s)}

ft x(a,a+h]

The independent increment property thus follows easily from the expression for

the ch.f. of ftVd , given in Theorem 5.1.
0

Next we check that MT is a Levy measure. It suffices to show that
t

f IIxIi 2 Al dMTt I < -. Observe that by a change of variables
Rp t -1 2

f IxI 2 Al dMTtl f IIxV(s)"2 Al dM(x,s).
"i P t t x[,t]

It is easy to check that IxV(s) 2 Al < n(xV(s)). If IxV(s)ll < 1,

" llxV(s) 1;2Al = n(xiIV(s) 1i); if I1xV(s)ll > 1, 11xV(s) I2Al = 1 < IIxV(s) 11

- n(x1lV(s) I). Hence

-. ~
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f lXV(S)I 2A 1dM(x,s) < .f n(xllV(s)iI)dM(x,s)
it X[O,t1 a~jx[o,tj

+ f ldM(x,s)

aJ cX[O,t1

<

This proves that MT- is a Levy measure.
t

To see that MT-1 is the Levy measure of ftVdC, write the ch.f. of
t0

ftVd4 in the form

exp~c a(t) + f e i<U,XV(S)>- 1 -iIjy1y11 (xV(s))(u,xV(s)>dM(x,s)
R x[O,tl ylyI]

*and then make a change of variables to get the expression

ex~ ()+ f e ~~> 1 - <uy~M-1 (~

* for the ch. f.

It is clear from the above expression for the ch.f. that f-tVdi has no

*Gaussian component. Q.E.D.

*Lemma 5.5. If vi, ... vp are any p real numbers and if v

*then there is a positive constant c pwhich does not depend on v such that

p

n([IVl11) < c )jn(vi)

* Proof. First assume that OlI > rj. Since livii < rp max lvi there is some

* ~Stich that V > 1, and lvi max lvi. Then
ij

p
max V IV *1 n(v,*) < ln(v,)

so n(11vli) -lvii < V,~ In(vi In this case.
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Next observe that if Ili , hnfr ah 1 < 1. Hence

n(IlvI) 111 2  v v 2  n(v) in this case.

Finally note that the function r(v) = n(vi)/n(iDvu) is continuous

on Ri N[O) so if mn minir(v): 1 < 1101l < Y'jl, m > 0. Let c - min(-,m).
- - p

Q.E.D.

Corollary 2. Let V1,... V pbe real-valued Borel-mensurable nonrandom

functions on [0,t] such that for some a > 0

f n(xVi(s))dM(x,s) < -, i= 1, ... , p.

Then the stochastic integrals ft V d~q ... ,9 f-tV dC are independent 1ff

M( R. xA) 0 where A {s E [0,t]: for some i and J, Vi(S)v (s) 01.

Vi(s)

Proof. Let V(s) -. .Then by Lemma 2.6,

V (S')p

p

aJx[O't] 1 ctix(OltI

Thus V satisfies the hypothesis of Cor. 1, and hence f!Vd exists and is

infinitely divisible with no Gaussian component and with Levy measure MT_

* where T: R x(0,tI + Rpis defined by the equation T(x,s) - xV(s). The

Integrals ftv dr,, ... , ftV dC are the iarginals of f~tvd , and thus, as is

*easy to see, they are independent 1ff MT_ is concentrated on the

*coordinate axes. That is, if D -tv E R:for some I and J, v vj 0}

*.~2.



57

then MT71 (D) -0. But T(x,s) E D 1ff for some i and J, x 2v 1(s)V (a) *0.

Since M (0) 0, MT -1(D)O 1 ff M( RxA) -O. Q.E.D.

Remark. The expressions given in Theorem 5.1 for the ch.f. seem to be natural

extensions of the case of simple V. If p -1, the integral

ftOt e'<u'xV(B)>- 1 - UiIi (x <u,xV(s)>dM(x,s) exists for all u jff

f n(xV(s))dM(x,s) < ~.(Prop. 5.3) If p > 1, then the corresponding
ctixfO, ti

* expressions for the marginals of f-tVde make sense iff
I0

f tn(xv i(s))dM(x,s) < - for each i and some a > 0. But according
ciiX[O't

to Lemma 5.5, the latter condition implies that f n(xUV(s)II)dM(x,s) < ~
czix[0, ti

Thus in this connection, at least for nonrandom V, it seems natural to

* require that

I n(xlBV(s)II)dMl(x,s) <

* for V to be integrable.
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